Step of Proof: typed-null-ite
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
typed-null-ite
:
x
,
y
:(Top List),
b
:
. null(if
b
then
x
else
y
fi ) = if
b
then null(
x
) else null(
y
) fi
latex
by Auto THEN SplitOnConclITE THEN Auto
latex
.
Definitions
Unit
,
P
Q
,
P
&
Q
,
P
Q
,
,
,
b
,
A
,
b
,
null(
as
)
,
x
:
A
.
B
(
x
)
,
Top
,
t
T
Lemmas
eqtt
to
assert
,
iff
transitivity
,
eqff
to
assert
,
assert
of
bnot
,
bool
wf
,
bnot
wf
,
not
wf
,
assert
wf
,
null
wf
,
top
wf
origin